Charged-particle emission tomography.

نویسندگان

  • Yijun Ding
  • Luca Caucci
  • Harrison H Barrett
چکیده

PURPOSE Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. METHODS Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. RESULTS Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. CONCLUSIONS We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerators for Charged Particle Therapy: Performance Criteria from the User Point of View

The introduction of charged particle therapy in the hospitals could provide substantial improvements to external radiation therapy for cancer treatment. Many different types of accelerators have been proposed for installation in the hospitals, all with their own merits and disadvantages. In this report we discuss the requirements posed by charged particle therapy on the quality of the beam deli...

متن کامل

Tumor Therapy with Heavy Charged Particles

The inverse depth dose profile i.e. the increase of the dose with penetration depth make heavy charged particles like protons and heavy ions an ideal tool for the radiotherapy of deep-seated tumors. For carbon ions this good dose profile is potentiated by an additional increase in the relative biological effectiveness (RBE) towards the end of the particle range. The physical and biological basi...

متن کامل

Positron emission intensities in the decay of 64 Cu , 76 Br and 124 I

The relatively long-lived positron emitters Cu (t1/2 = 12.7 h), Br (t1/2 = 16.2 h) and I (t1/2 = 4.18 d) are finding increasing applications in positron emission tomography (PET). For precise determination of their positron emission intensities, each radionuclide was prepared via a charged particle induced reaction in a “no-carrier-added” form and with high radionuclidic purity. It was then sub...

متن کامل

Phenomenon of an Energetic Charged Particle Emission from Hydrogen/deuterium Loaded Metals

We report the discovery of the new phenomenon of energetic alpha emission (up to 16.0MeV), and proton emission (∼1.7MeV), from a metal surface possessing a large affinity for hydrogen and loaded/excited by electrolysis, glow discharge or powerful laser. Various experiments on charged particle emission show a remarkable feature: all exhibit a similar yield per unit input energy of energetic alph...

متن کامل

Alfven Cyclotron Instability and Ion Cyclotron Emission

Two-dimensional solutions of compressional Alfven eigenmodes (CAE) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of u / f i and u/*, respectively, where rn is the dominant poloidal mode number. Charged fusion pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2017